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SET

A set is a well-defined collection of objects such that given 
an object, it is possible to determine whether that object 
belongs to the given collection or not.

For example, the collection of all students of Delhi 
University is a set, whereas, collection of all good books 
on mathematics is not a set, since a mathematics book con-
sidered good by one person might be considered bad or 
average by another.

Notations

The sets are usually denoted by capital letters A, B, C, etc. 
and the members or elements of the set are denoted by 
lower-case letters a, b, c etc. If x is a member of the set A, 
we write x ∈ A (read as ‘x belongs to A’) and if x is not a 
member of the set A, we write x ∉ A (read as ‘x does not 
belong to A’). If x and y both belong to A, we write x, y ∈ A.

REPRESENTATION OF A SET

Usually, sets are represented in the following two ways:

	 1.	 Roster form or tabular form
	 2.	 Set builder form or rule method

Roster Form

In this form, we list all the members of the set within braces 
(curly brackets) and separate these by commas.

For example, the set A of all odd natural numbers less 
than 10 in the roster form is written as:

A = {1, 3, 5, 7, 9}

■	 In roster form, every element of the set is listed only 
once.

■	 The order in which the elements are listed is immaterial 
For example, each of the following sets denotes the same 
set {1, 2, 3}, {3, 2, 1}, {1, 3, 2}.

I M P O R T A N T  P O I N T S

Set-builder Form

In this form, we write a variable (say x) representing any 
member of the set followed by a property satisfied by each 
member of the set.

For example, the set A of all prime numbers less than 
10 in the set-builder form is written as

A = {x | x is a prime number less than 10}

The symbol ‘|’ stands for the words ‘such that’. Sometimes, 
we use the symbol ‘:’ in place of the symbol ‘|’.

TYPES OF SETS

Empty Set or Null Set

A set which has no element is called the null set or empty 
set. It is denoted by the symbol f.

For example, each of the following is a null set:

	 1.	 The set of all real numbers whose square is –1.
	 2.	 The set of all rational numbers whose square is 2.
	 3.	 The set of all those integers that are both even and odd.

A set consisting of atleast one element is called a non-empty 
set.

Set Theory1
CHAPTER

LEARNING OBJECTIVES

After reading this chapter, you will be able to:
  Learn the definition of set and how is it denoted
 � Know how the sets are represented and what are its  
types

 � Understand the operations on sets and Identify some key 
results

 � Establish a relation between the two sets and study about 
its types



1.2  Chapter 1

Singleton Set

A set having only one element is called singleton set.
For example, {0} is a singleton set, whose only 

member is 0.

Finite and Infinite Set

A set which has finite number of elements is called a finite 
set. Otherwise, it is called an infinite set.

For example, the set of all days in a week is a finite set 
whereas, the set of all integers, denoted by {…, – 2, – 1, 0, 
1, 2, …} or {x | x is an integer}, is an infinite set.

An empty set f which has no element, is a finite set.
The number of distinct elements in a finite set A is 

called the cardinal number of the set A and it is denoted 
by n (A).

Equal Sets

Two sets A and B are said to be equal, written as A = B, if 
every element of A is in B and every element of B is in A.

Equivalent Sets

Two finite sets A and B are said to be equivalent, if n(A) = 
n(B).

Equal sets are equivalent but equivalent sets need not be 
equal.

For example, the sets A = {4, 5, 3, 2} and B = {1, 6, 
8, 9} are equivalent but are not equal.

E R R O R  C H E C K

Subset

Let A and B be two sets. If every element of A is an element 
of B, then A is called a subset of B and we write A ⊆ B or 
B ⊇ A (read as ‘A is contained in B’ or B contains A’). B is 
called superset of A.

■	 If A ⊆ B and A ≠ B, we write A ⊂ B or B ⊃ A (read as : A 
is a proper subset of B or B is a proper superset of A).

■	 Every set is a subset and a superset of itself.

■	 If A is not a subset of B, we write A ⊄ B.

■	 The empty set is the subset of every set.

■	 If A is a set with n (A) = m, then the number of subsets 
of A are 2m and the number of proper subsets of A are 
2m–1.

I M P O R T A N T  P O I N T S

For example, let A = {3, 4}, then the subsets of A are f, 
{3}, {4}, {3, 4}. Here, n(A) = 2 and number of subsets of 

A = 22 = 4.
Also, {3} ⊂ {3, 4} and {2, 3} ⊄ {3, 4}

Power Set

The set of all subsets of a given set A is called the power set 
of A and is denoted by P(A).

For example, if A = {1, 2, 3}, then

P(A) = [f, {1}, {2}, {3}, {1, 2} {1, 3}, {2, 3}, {1, 2, 3}]

Clearly, if A has n elements, then its power set P(A) contains 
exactly 2n elements.

Number of elements in P {P [P(f)]} is 4

or Cardinal Number of P{P[P(f)]} = 4

Since,	 P (f) = {f}

Also,	 P [P (f)] = {f, {f}}

and	 P {P[P (f)]} = {f, {f}, [{f}], [f, {f}]}

Hence,	 n [P {P[P (f)]}] = 4

QUICK TIPS

Euler–Venn Diagrams

To express the relationship among sets, we represent them 
pictorially by means of diagrams, known as Euler–Venn 
Diagrams or simply Venn diagrams.

In Venn diagrams, the universal set U is represented 
by the rectangular region and its subsets are represented by 
closed bounded circles inside this rectangular region.

OPERATIONS ON SETS

Union of Two Sets

The union of two sets A and B, written as A ∪ B (read as  
‘A union B’), is the set consisting of all the elements which 
are either in A or in B or in both. Thus,

	 A ∪ B = {x: x ∈ A  or  x ∈ B}�

Clearly,	 x ∈ A ∪ B�
⇒	 x ∈ A�

or	 x ∈ B,�
and	 x ∉ A ∪ B�

⇒	 x ∉ A�
and	 x ∉ B.�

For example, if A = {a, b, c d} and B = {c, d, e, f }, then 
A ∪ B = {a, b, c, d, e, f }.
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FIGURE 1.1

Intersection of Two Sets

The intersection of two sets A and B, written as A ∩ B (read 
as ‘A intersection B’) is the set consisting of all the com-
mon elements of A and B. Thus,

	 A ∩ B = {x: x ∈ A and x ∈ B}�

Clearly,	 x ∈ A ∩ B�

⇒	 x ∈ A  and  x ∈ B,�

and	 x ∉ A ∩ B�

⇒	 x ∉ A or x ∉ B.�

For example, if A = {a, b, c, d} and B = {c, d, e, f }, then 
A ∩ B = {c, d}.

U

A ∩ B

A B

FIGURE 1.2

Disjoint Sets

Two sets A and B are said to be disjoint, if A ∩ B = f, i.e., 
A and B have no element in common.

For example, if A = {1, 2, 5} and B = {2, 4, 6}, then
A ∩ B = f, so A and B are disjoint sets.

U

BA

FIGURE 1.3

Difference of Two Sets

If A and B are two sets, then their difference A – B is defined as

	 A – B = {x: x ∈ A and x ∉ B}�

Similarly,

	 B – A = {x: x ∈ B and x ∉ A}�

For example,

if	 A = {1, 2, 3, 4, 5} and B = {1, 3, 5, 7, 9},�

then	 A – B = {2, 4} and B – A = {7, 9}�

U U

A B A B

A – B B – A

FIGURE 1.4  (a–b)

Info Box!
� A – B ≠ B – A
� The sets A – B, B – A and A ∩ B are disjoint sets
� A – B ⊆ A and B – A ⊆ B
� A – ϕ = A and A – A = ϕ

Symmetric Difference of Two Sets

The symmetric difference of two sets A and B, denoted by 
A D B, is defined as

A D B = (A – B) ∪ (B – A).

For example, if A = {1, 2, 3, 4, 5} and B = {1, 3, 5, 7, 9} then A 
D B = (A – B) ∪ (B – A) = {2, 4} ∪ {7, 9} = {2, 4, 7, 9}.

A

B

FIGURE 1.5

Complement of a Set

If U is a universal set and A is a subset of U, then the com-
plement of A is the set which contains those elements of 
U, which are not contained in A and is denoted by A′ or Ac. 
Thus,

A′ = {x: x ∈ U and x ∉ A}

For example, 
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if	 U = {1, 2, 3, 4, …} and A = {2, 4, 6, 8, …},�

then,	 A′ = {1, 3, 5, 7, …}�

U

A′

A

FIGURE 1.6

Info Box!
■	 U′ = f
■	 f′ = U

■	 A ∪ A′ = U

■	 A ∩ A′ = f

ALGEBRA OF SETS

	 1.	 Idempotent Laws: For any set A, we have
		  (a)	 A ∪ A = A
	 	 (b)	 A ∩ A = A
	 2.	 Identity Laws: For any set A, we have:
		  (a)	 A ∪ f = A
	 	 (b)	 A ∩ f = f
		  (c)	 A ∪ U = U
	 	 (d)	 A ∩ U = A
	 3.	 Commutative Laws: For any two sets A and B, we 

have
		  (a)	 A ∪ B = B ∪ A
	 	 (b)	 A ∩ B = B ∩ A
	 4.	 Associative Laws: For any three sets A, B and C, we 

have
		  (a)	 A ∪ (B ∪ C) = (A ∪ B) ∪ C
		  (b)	 A ∩ (B ∩ C) = (A ∩ B) ∩ C
	 5.	 Distributive Laws: For any three sets A, B and C, we 

have
		  (a)	 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
		  (b)	 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
	 6.	 For any two sets A and B, we have
		  (a)	 P(A) ∩ P(B) = P(A ∩ B)
		  (b)	 P(A) ∪ P(B) ⊆ P(A ∪ B), where P(A) is the power 

set of A.
	 7.	 If A is any set, we have (A′)′ = A.
	 8.	 Demorgan’s Laws: For any three sets A, B and C, we 

have
		  (a)	 (A ∪ B)′ = A′ ∩ B′

		  (b)	 (A ∩ B)′ = A′ ∪ B′
		  (c)	 A – (B ∪ C) = (A – B) ∩ (A – C)
		  (d)	  A – (B ∩ C) = (A – B) ∪ (A – C)

Key Results on Operations on Sets

	 1.	 A ⊆ A ∪ B, B ⊆ A ∪ B, A ∩ B ⊆ A, A ∩ B ⊆ B
	 2.	 A – B = A ∩ B′
	 3.	 (A – B) ∪ B = A ∪ B
	 4.	 (A – B) ∩ B = f
	 5.	 A ⊆ B ⇔ B′ ⊆ A′
	 6.	 A – B = B′ – A′
	 7.	 (A ∪ B) ∩ (A ∪ B′) = A
	 8.	 A ∪ B = (A – B) ∪ (B – A) ∪ (A ∩ B)
	 9.	 A – (A – B) = A ∩ B
	10.	 A – B = B – A ⇔ A = B
	11.	 A ∪ B = A ∩ B ⇔ A = B
	12.	 A ∩ (B D C) = (A ∩ B) D (A ∩ C)

Some Results about Cardinal Number

If A, B and C are finite sets and U be the finite universal 
set, then

	 1.	 n (A′) = n (U) – n (A)
	 2.	 n (A ∪ B) = n (A) + n (B) – n (A ∩ B)
	 3.	 n (A ∪ B) = n (A) + n(B),
		  where A and B are disjoint non-empty sets
	 4.	 n (A ∩ B′) = n (A) – n (A ∩ B)
	 5.	 n (A′ ∩ B′) = n (A ∪ B) ‘ = n (U) – n (A ∪ B)
	 6.	 n (A′ ∪ B′) = n (A ∩ B) ‘ = n (U) – n (A ∩ B)
	 7.	 n (A – B) = n (A) – n (A ∩ B)
	 8.	 n (A ∩ B) = n (A ∪ B) – n (A ∩ B′) – n (A′ ∩ B)
	 9.	 n (A ∪ B ∪ C) = n (A) + n (B) + n (C) – n (A ∩ B)  

– n (B ∩ C) – n (C ∩ A) + n (A ∩ B ∩ C)
	10.	 If A1, A2, A3, … An are disjoint sets, then
		  n (A1 ∪ A2 ∪ A3 ∪ … ∪ An) = n (A1) + n (A2) + n (A3) 

+ … + n (An)
	11.	 n (A D B) = number of elements which belong to 

exactly one of A or B

CARTESIAN PRODUCT OF TWO SETS

If A and B are any two non-empty sets, then cartesian 
product of A and B is defined as

A × B = [(a, b) : a ∈ A and b ∈ B]

A × B ≠ B × A

E R R O R  C H E C K
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■	 If A = f or B = f, then we define A × B = f.

■	 If A has n elements and B has m elements then A × B has 
mn elements.

■	 If A1, A2, …, Ap are p non-empty sets, then their cartesian 

product, is defined as Ai
i

p

=1
∏  = [(a1, a2, a3, …, ap); ai ∈ Ai 

for all i]

QUICK TIPS

Key Results on Cartesian Product

If A, B, C are three sets, then

	 1.	 A × (B ∪ C) = (A × B) ∪ (A × C)
	 2.	 A × (B ∩ C) = (A × B) ∩ (A × C)
	 3.	 A × (B – C) = (A × B) – (A × C)
	 4.	 (A × B) ∩ (S × T) = (A ∩ S) × (B ∩ T),
		  where S and T are two sets.
	 5.	 If A ⊆ B, then (A × C) ⊆ (B × C)
	 6.	 If A ⊆ B, then (A × B) ∩ (B × A) = A2

	 7.	 If A ⊆ B and C ⊆ D then A × C ⊆ B × D
	 8.	 If A ⊆ B, then A × A ⊆ (A × B) ∩ (B × A)
	 9.	 If A and B are two non-empty sets having n elements 

in common, then A × B and B × A have n2 elements in 
common.

	10.	 A × B = B × A if and only if A = B
	11.	 A × (B′ ∪ C ′)′ = (A × B) ∩ (A × C)
	12.	 A × (B′ ∩ C ′)′ = (A × B) ∪ (A × C)

SOLVED EXAMPLES

	 1.	 If n (U) = 60, n (A) = 35, n (B) = 24 and n (A ∪ B)′ = 
10 then n (A ∩ B) is

		  (A)  9			   (B)  8
		  (C)  6			   (D)  None of these

Solution:  (A)

We have,

	 n(A ∪ B) = n (U) – n(A ∪ B)′ = 60 – 10 = 50�

Now,	 n (A ∪ B) = n (A) + n(B) – n(A ∩ B)�

(A ∪ B)′

A ∩ B

U

A B

⇒	 50 = 35 + 24 – n (A ∩ B)�

⇒	 n(A ∩ B) = 59 – 50 = 9.�

	 2.	 Let A = {2, 3, 4} and X = {0, 1, 2, 3, 4}, then which of 
the following statements is correct?

		  (A)  {0} ∈ A′ in X
		  (B)  f ∈ A′ with respect to. X
		  (C)  {0} ⊂ A′ with respect to X
		  (D)  0 ⊂ A′ with respect to X.

Solution:  (C)
We have, A′ in X = The set of elements in X which are 
not in A = {0, 1}

{0} ∈ A′ in X is false, because {0} is not an element 
of A′ in X.

f ⊂ A′ in X is false, because f is not an element 
of A′ in X

{0} ⊂ A′ in X is correct, because the only element 
of {0} namely 0 also belongs to A′ in X.

0 ⊂ A′ in X is false, because 0 is not a set.

	 3.	 If X = {8n – 7 n – 1/n ∈ N} and Y = {49 (n – 1)/n ∈ N}, 
then

		  (A)  X ⊂ Y			   (B)  Y ⊂ X
		  (C)  X = Y			   (D)  None of these

Solution:  (A)

We have, 8n – 7n – 1

	 = (7 + 1)n – 7n – 1 = (nC27
2 + nC37

3 + … + nCn7
n)�

	 = 49(nC2 + nC37 + … + nCn7
n – 2) for n ≥ 2�

For n = 1, 8n – 7n – 1 = 0
Thus, 8n – 7 n – 1 is a multiple of 49 for n ≥ 2 and 

0 for n = 1. Hence, X consists of all positive integral 
multiples of 49 of the form 49 Kn. where Kn = nC2 + 
nC37 + … + nCn7

n – 2 together with zero. Also, Y con-
sists of all positive integral multiples of 49 including 
zero. Therefore, X ⊂ Y.

	 4.	 The set (A ∪ B ∪ C) ∩ (A ∩ B′ ∩ C′)′ ∩ C′ is equal to

		  (A)  A ∩ B			   (B)  A ∩ C ′
		  (C)  B ∩ C ′			   (D)  B′ ∩ C ′

Solution:  (C)

(A ∪ B ∪ C) ∩ (A ∩ B′ ∩ C ′)′ ∩ C ′

	 = (A ∪ B ∪ C) ∩ (A′ ∪ B ∪ C) ∩ C ′	

	 = [(A ∩ A′) ∪ (B ∪ C)] ∩ C ′�

	 = (f ∪ B ∪ C) ∩ C ′ = (B ∪ C) ∩ C ′�

	 = (B ∩ C ′) ∪ (C ∩ C ′)�

	 = (B ∩ C ′) ∪ f = B ∩ C ′�
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	 5.	 If A, B and C are non-empty subsets of a set, then 
(A – B) ∪ (B – A) equals

		  (A)  (A ∩ B) ∪ (A ∪ B)	 (B)  (A ∪ B) – (A ∩ B)
		  (C)  A – (A ∩ B)		  (D)  (A ∪ B) – B

Solution:  (B)

(A – B) ∪ (B – A) = (A ∪ B) – (A ∩ B)

A ∩ B

A B

A − B B − A

	 6.	 Let A and B two non-empty subsets of a set X such that 
A is not a subset of B then

		  (A)  A is subset of the complement of B
		  (C)  B is a subset of A
		  (C)  A and B are disjoint
		  (D)  A and the complement of B are non-disjoint

Solution:  (D)

Since A ⊄ B, $ x ∈ A such that x ∉ B

Then	 x ∈ B ′.�

\	 A ∩ B ′ ≠ f�

	 7.	 Two finite sets have m and n elements, then total number 
of subsets of the first set is 56 more that the total number 
of subsets of the second. The values of m and n are,

		  (A)  7, 6	 (B)  6, 3	 (D)  5, 1	 (D)  8, 7

Solution:  (B)

Since the two finite sets have m and n elements, so 
number of subsets of these sets will be 2m and 2n 
respectively. According to the question

	 2m – 2n = 56�

putting	 m = 6, n = 3, we get�

	 26 – 23 = 56  or  64 – 8 = 56�

	 8.	 Let U = R (the set of all real numbers) If A = {x : x ∈ 
R, 0 < x < 2}, B = {x : x ∈ R, 1 < x ≤ 3}, then

		  (A)  A ∪ B = {x : x ∈ R and 0 < x ≤ 3}
		  (B)  A ∩ B = {x : x ∈ R and 1 < x < 2}
		  (C)  A – B = {x : x ∈ R and 0 < x ≤ 1}
		  (D)  All of these

Solution:  (D)

We have

	 A′ = R – A = {x : ∈ R and x ∉ A}�

	 = {x : (x ∈ R and x ≥ 2) or (x ∈ R and x ≤ 0)}�

	 = {x : x ∈ R and x ≥ 2} ∪ {x : x ∈ R and x ≤ 0}�

Similarly,

B′ = {x : x ∈ R and x ≤ 1} ∪ {x : x ∈ R and x > 3}�

\	 A ∪ B = {x : x ∈ R and 0 < x ≤ 3},�

	 A ∩ B = {x : x ∈ R and 1 < x < 2}�

	 A – B = {x : x ∈ R and 0 < x ≤ 1}�

	 9.	 If Y ∪ {1, 2} = {1, 2, 3, 5, 9}, then

		  (A)  The smallest set of Y is {3, 5, 9}
		  (B)  The smallest set of Y is {2, 3, 5, 9}
		  (C)  The largest set of Y is {1, 2, 3, 4, 9}
		  (D)  The largest set of Y is {2, 3, 4, 9}

Solution:  (A and C)

Since the set on the right hand side has 5 elements,
\ smallest set of Y has three elements and largest 

set of Y has five elements,
\ smallest set of Y is {3, 5, 9}
and largest set of Y is {1, 2, 3, 4, 9}.

	10.	 If A has 3 elements and B has 6 elements, then the 
minimum number of elements in the set A ∪ B is

		  (A)  6			   (B)  3
		  (C)  f			   (D)  None of these

Solution:  (A)

Clearly the number of elements in A ∪ B will be mini-
mum when A ⊂ B. Hence the minimum number of ele-
ments in A ∪ B is the same as the number of elements 
in B, that is, 6.

	11.	 Suppose A1, A2, … A30 are thirty sets, each with five 
elements and B1, B2, …, Bn are n sets each with three 

elements. Let Ai
i =1

30

∪  = Bj
j

n

=1
∪  = S

		  If each element of S belongs to exactly ten of the Ai′s 
and exactly nine of the Bj′s then n =

		  (A)  45			   (B)  35
		  (C)  40			   (D)  None of these

Solution:  (A)

Given Ai′s are thirty sets with five elements each, so

	 n Ai
i

( )
=1

30

∑  = 5 × 30 = 150� (1)

If there are m distinct elements in S and each element 
of S belongs to exactly 10 of the Ai′s, we have

	 n Ai
i

( )
=1

30

∑  = 10 m� (2)
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\	 From Eq. (1) and (2), we get

	 10 m = 150�

\	 m = 15� (3)

Similarly n Bj
j

( )
=1

30

∑  = 3n and n Bj
j

( )
=1

30

∑ = 9 m

\	 3 n = 9 m�

⇒	 n = 
9

3

m
 = 3 m = 3 × 15 = 45� [from (3)]

Hence,	 n = 45.�

	12.	 If A = {1, 3, 5, 7, 9, 11, 13, 15, 17}, B = {2, 4, …, 18} 
and N is the universal set, then A′ ∪ ((A ∪ B) ∩ B′) is

		  (A)  A			   (B)  N
		  (C)  B			   (D)  None of these

Solution:  (B)

We have,

	 (A ∪ B) ∩ B′ = A�

	 [(A ∪ B) ∩ B′] ∪ A′ = A ∪ A′ = N.�

	13.	 If X and Y are two sets and X′ denotes the complement 
of X, then X ∩ (X ∪ Y)′ equals

		  (A)  X			   (B)  Y
		  (C)  f			   (D)  None of these

Solution:  (C)

	 X ∩ (X ∪ Y)′ = X ∩ (X ′ ∩ Y ′)�
� [∵  By De-Morgan’s Law (A ∪ B)′ = (A′ ∩ B′)]

	 = (X ∩ X ′) ∩ Y ′ = f ∩ Y ′ = f�

	14.	 In a group of 65 people, 40 like cricket, 10 like both 
cricket and tennis. The number of persons liking tennis 
only and not cricket is

		  (A)  21			   (B)  25
		  (C)  15			   (D)  None of these

Solution:  (B)

Let A be the set of people who like cricket and B the 
set of people who like tennis.

Then	 n(A ∪ B) = 65�

	 n (A) = 40, n(A ∩ B) = 10�

U

A B

30 10 25

∵ 	 n (A ∪ B) = n(A) + n(B) – n(A ∩ B)�

	 65 = 40 + n (B) – 10�

	 n (B) = 65 – 40 + 10 = 35�

Number of people who like only tennis

= n(B) – n (A ∩ B) = 35 – 10 = 25

\ Number of people who like tennis only and not 
cricket = 25.

	15.	 In a group of 1000 people, there are 750 people who 
can speak Hindi and 400 who can speak English. Then 
number of persons who can speak Hindi only is

		  (A)  300			   (B)  400
		  (C)  600			   (D)  None of these

Solution:  (C)

Here

	 n(H ∪ E) = 1000, n (H) = 750,�

	 n (E) = 400�

Using	 n(H ∪ E) = n(H) + n(E) – n(H ∩ E)�

	 1000 = 750 + 400 – n (H ∩ E)�

⇒	 n (H ∩ E) = 1150 – 1000 = 150.�

U

H E

600 150 250

Number of people who can speak Hindi only

	 = n(H ∩ E′) = n(H) – n(H ∩ E)�

	 = 750 – 150 = 600.�

	16.	 If f : R → R, defined by f (x) = x2 + 1, then the values of 
f –1(17) and f –1(–3) respectively are

		  (A)  f, {4, –4}		  (B)  {3, –3}, f
		  (C)  f, {3, –3}		  (D)  {4, –4}, f

Solution:  (D)

Let y = x2 + 1. Then for y = 17,
we have x = ± 4 and for y = –3, x becomes imaginary 

that is, there is no value of x.

Hence,	 f (17) = {–4, 4}�

and	 f–1(–3) = f�



1.8  Chapter 1

	17.	 In a statistical investigation of 1,003 families of 
Kolkata, it was found that 63 families had neither a 
radio nor a TV, 794 families had a radio and 187 had a 
TV. The number of families in that group having both 
a radio and a TV is

		  (A)  36			   (B)  41
		  (C)  32			   (D)  None of these

Solution:  (B)

Let R be the set of families having a radio and T, the 
set of families having a TV, then

n (R ∪ T) = The no. of families having at least one 
of radio and TV

	 = 1003 – 63 = 940�

	 n (R) = 794 and n(T) = 187�

Let x families had both a radio and a TV i.e.,

TR

x

∪

79
4 

– 
x

18
7 

– 
x

n (R ∩ T ) = x

The number of families who have only radio = 794 – x 
and the number of families who have only TV = 187 – x

From Venn diagram,

	 794 – x + x + 187 – x = 940�

⇒	 981 – x = 940 or x = 981 – 940 = 41�

Hence, the required no. of families having both a radio 
and a TV = 41.

	18.	 In a city, three daily newspapers A, B, C are published. 
42% of the people in that city read A, 51% read B and 
68% read C. 30% read A and B; 28% read B and C; 
36% read A and C; 8% do not read any of the three 
newspapers. The percentage of persons who read all 
the three papers is

		  (A)  25%			   (B)  18%
		  (C)  20%			   (D)  None of these

Solution:  (A)

Let the no. of persons in the city be 100.
Then we have

	 n (A) = 42, n (B) = 51, n (C) = 68;�

	 n (A ∩ B) = 30, n(B ∩ C) = 28, n(A ∩ C) = 36�

	 n (A ∪ B ∪ C) = 100 – 8 = 92�

Using

	 n(A ∪ B ∪ C) = n (A) + n(B) + n(C) – n(A ∩ B)�

	 – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)�

Substituting the above values, we have

	92 = 42 + 51 + 68 – 30 – 28 – 36 + n (A ∩ B ∩ C)�

⇒	 n (A ∩ B ∩ C) = 92 – 161 + 94�

⇒	 n (A ∩ B ∩ C) = 92 – 67 = 25�

Hence, 25% of the people read all the three papers.

	19.	 Out of 800 boys in a school, 224 played cricket, 240 
played hockey and 336 played basketball. Of the total, 
64 played both basketball and hockey; 80 played 
cricket and basketball and 40 played cricket and 
hockey; 24 played all the three games. The number of 
boys who did not play any game is

		  (A)  160	 (B)  240	 (C)  216	 (D)  128

Solution:  (A)

	 n (C) = 224, n (H) = 240, n (B) = 336�

	 n (H ∩ B) = 64, n (B ∩ C) = 80�

	 n (H ∩ C) = 40, n (C ∩ H ∩ B) = 24�

	 n (C c ∩ H  
c ∩ B c) = n [(C ∪ H ∪ B)c]�

	 = n (U) – n (C ∪ H ∪ B)�

	 = 800 – [n (C) + n (H) + n (B) – n (H ∩ C)�

	 – n (H ∩ B) – n (C ∩ B) + n (C ∩ H ∩ B)]�

	 = 800 – [224 + 240 + 336 – 64 – 80 – 40 + 24]�

	 = 800 – [824 – 184] = 984 – 824 = 160.�

	20.	 In a certain town 25% families own a phone and 15% 
own a car, 65% families own neither a phone nor a car. 
2000 families own both a car and a phone. Consider 
the following statements in this regard:

		  1.  10% families own both a car and a phone.
		  2.  35% families own either a car or a phone.
		  3.  40,000 families live in the town.
		  Which of the above statements are correct?
		  (A)  1 and 2			   (B)  1 and 3
		  (C)  2 and 3			   (D)  1, 2 and 3

Solution:  (C)

	 n(P) = 25%, n(C) = 15%,�

	 n (P ′ ∩ C ′) = 65%, n (P ∩ C) = 2000�

Since,	 n (P ′ ∩ C ′) = 65%�
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\	 n(P ∪ C)′ = 65%�
\	 n(P ∪ C) = 35%�
Now,	 n (P ∪ C) = n (P) + n (C) – n (P ∩ C)�

\	 35 = 25 + 15 – n (P ∩ C)�

\	 n (P ∩ C) = 40 – 35 = 5�

Thus,	 n(P ∩ C) = 5%�
But,	 n(P ∩ C) = 2000�

\	 5% of the total = 2000�

\	 total no. of families = 
2000 100

5

×
 = 40000�

\	 n(P ∪ C) = 35%,�

Total no. of families = 40,000 and n(P ∩ C) = 5%.

	21.	 If P, Q and R are subsets of a set A, then R × (P ′ ∪ Q′)′ 
equals

		  (A)  (R × P) ∩ (R × Q)	 (B)  (R × Q) ∩ (R × P)
		  (C)  (R × P) ∪ (R × Q)	 (D)  None of these

Solution:  (A)

	 R × (P′ ∪ Q′)′ = R × [(P ′)′ ∩ (Q ′)′]�
	 = R × (P ∩ Q)�

	 = (R × P) ∩ (R × Q)�

	22.	 If sets A and B are defined as

		  A = {(x, y) : y = ex, x ∈ R}
		  B = {(x, y) : y = x, x ∈ R} then

		  (A)  B ⊂ A		  	 (B)  A ⊂ B
		  (C)  A ∩ B = f		  (D)  A ∪ B = A

Solution:  (C)

Since	 y = ex = 1 + x + 
x x2 3

2 3! !
+  + …�

\ ex > x ∀ x ∈ R so that the two curves given by y = ex 
and y = x do not intersect in any point Hence, there is 
no common point, so that A ∩ B = f.

	23.	 The solution of 3x2 – 12x = 0 when

		  (A)  x ∈ N is {4}
		  (B)  x ∈ I is {0, 4}
		  (C)  x ∈ S = {a + ib : b ≠ 0, a, b ∈ R} is f
		  (D)  All of these

Solution:  (D)

We have,

	 3x2 – 12x = 0�

⇒	 3x (x – 4) = 0�

⇒	 x = 0, 4�

Now, if x ∈ N, then the solution set is {4}.
Also, if x ∈ I, then the solution set is {0, 4}.
Further, since there is no root of the form a + ib, 

where a, b are real and b ≠ 0,
\ if x ∈ S = {a + ib : b ≠ 0, a, b ∈ R} then the 

solution set is f.

RELATIONS

Let A, B be any two non-empty sets, then every subset of 
A × B defines a relation from A to B and every relation from 
A to B is a subset of A × B.

If R is a relation from A to B and if (a, b) ∈ R, then we 
write a R b and say that ‘a is related to b’ and if (a, b) ∉ R, 
then we write a R  b and say that a is not related to b.

Key Results on Relations

	 1.	 Every subset of A × A is said to be a relation on A.
	 2.	 If A has m elements and B has n elements, then A × B 

has mn elements and total number of different relations 
from A to B is 2mn.

	 3.	 Let R be a relation from A to B, i.e. R ⊆ A × B, then
		  Domain of R = {a : a ∈ A, (a, b) ∈ R for some b ∈ B}
		  Range of R = {b : b ∈ B, (a, b) ∈ R for some a ∈ A}
		  For example, let A = {1, 3, 4, 5, 7}, B = {2, 4, 6, 8} and 

R be the relation ‘is one less than’ from A to B, then
		  R = [(1, 2), (3, 4), (5, 6), (7, 8)].
		  Here, domain of R = {1, 3, 5, 7} and range of R = {2, 

4, 6, 8}.

Info Box!

Info Box!

Domain of a relation from A to B is a subset of A and its 
range is a subset of B

Identity Relation

R is an identity relation if (a, b) ∈ R if a = b, a ∈ A, b ∈ A. 
In other words, every element of A is related to only itself.

Universal Relation

Let A be any set and R be the set A × A, then R is called the 
universal relation in A.

Void Relation

f is called void relation in a set.

The void and the universal relations on a set A are respec-
tively the smallest and the largest relations on A

QUICK TIPS


